High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso
نویسندگان
چکیده
منابع مشابه
High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear inp...
متن کاملHigh-Dimensional Feature Selection by Feature-Wise Non-Linear Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear inp...
متن کاملSequential Lasso cum EBIC for feature selection with ultra-high dimensional feature space
In this paper, we propose a method called sequential Lasso (SLasso) for feature selection in sparse high dimensional linear models. The SLasso selects features by sequentially solving partially penalized least squares problems where the features selected in earlier steps are not penalized. The SLasso uses extended BIC (EBIC) as the stopping rule. The procedure stops when EBIC reaches a minimum....
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2014
ISSN: 0899-7667,1530-888X
DOI: 10.1162/neco_a_00537